

Arquitetura de Computadores

UNIDADE 4

"Arquitetura de Microprocessadores "

Sumário

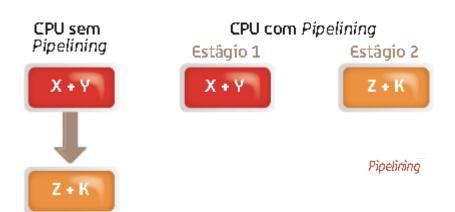
- Técnicas de processamento paralelo;
 - Pipeline;
 - Hyper-Threading;
- Processadores de vários núcleos;

TÉCNICAS DE PROCESSAMENTO PARALELO

O aumento de velocidade de processamento levou a um problema de <u>sobreaquecimento</u>.

Por outro lado fazer processadores com velocidades muito elevadas, faria que muitas vezes o processador seria desaproveitado, porque o restante hardware não conseguiu acompanhar a evolução dos processadores e levaria a um desperdício energético desnecessário.

Como vimos anteriormente o processador processa instrução a instrução isto é, passo a passo. Na presença de duas instruções independentes era vantajoso que ambas fossem processadas em simultâneo.

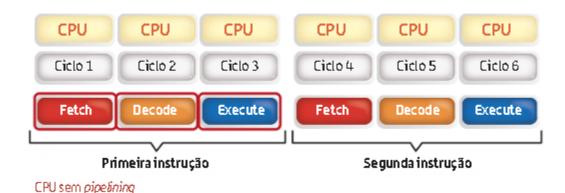

Assim surgiu uma primeira abordagem que se chamou <u>Pipelining</u>, método que permite ao processador executar uma nova instrução sem precisar de esperar pelo término da anterior.

TÉCNICAS DE PROCESSAMENTO PARALELO

Pipelining

Por exemplo: duas instruções sequenciais X+Y e Z+K, em nada dependem uma da outra. Antes da introdução dos processadores x86, elas eram processadas de forma sequencial, os processadores começavam por processar X+Y e depois de terminar iniciavam o processamento de Z+K.

Com a introdução da tecnologia de pipeline e dependendo do número de estágios é possível atender a mais de uma instrução em simultâneo.

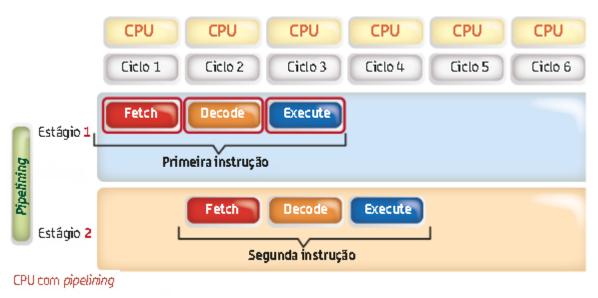


TÉCNICAS DE PROCESSAMENTO PARALELO

Pipelining

A grande diferença que existe entre processadores com ou sem pipeline, encontra-se no ciclo fetch-decode-execute (procura-descodifica-executa).

Num processador sem pipeline para processar duas instruções, elas seriam atendidas da seguinte forma:

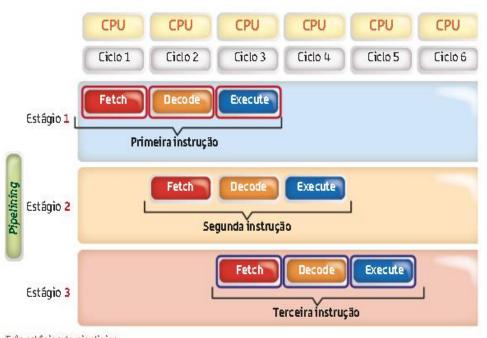

Como podemos verificar a segunda instrução só é atendida após a primeira terminar.

TÉCNICAS DE PROCESSAMENTO PARALELO

Pipelining

Num CPU com pipeline as mesmas duas instruções dão atendidas da seguinte forma:

Como podemos verificar na figura, a execução das duas instruções precisa de menos dois ciclos para terminar. Isto só é possível pelo paralelismo no atendimento das instruções.



TÉCNICAS DE PROCESSAMENTO PARALELO

Pipelining

Se houver uma terceira instrução e um terceiro estágio de pipeline, a fase de procura tem de ser iniciada ao mesmo tempo que a primeira instrução é executada e a segunda instrução é descodificada.

❖ Como podemos verificar a partir da terceira instrução é possível o processador executar uma instrução por ciclo. Aumentando assim a velocidade de processamento - Throughput

Três estágios de pipelining

TÉCNICAS DE PROCESSAMENTO PARALELO

Pipelining

Quanto mais estágios de pipeline mais instruções poderiam ser atendidas, para isso teríamos de partir as instruções em mais fases do que Fetch - Decode - Execute, ocupando cada uma menos tempo por ciclo, isto é no mesmo numero de estágios pretendidos.

O número de estágios existentes denomina-se de profundidade de estágios (Pipelining Deep).

❖ O Pentium 4 Prescot, tinha 31 estágios de pipeline, no entanto, levava a um consumo extra de energia e a uma dificuldade de sincronizar todos os estágios entre si. Porque, as fases em que eram divididas as instruções, não tinham o mesmo tempo de processamento, o que provocava tempos de espera, levando ao abaixamento do numero de pipelines (Pipeline Stall).

TÉCNICAS DE PROCESSAMENTO PARALELO

Pipelining

Quanto mais estágios de pipeline mais instruções poderiam ser atendidas, para isso teríamos de partir as instruções em mais fases do que Fetch - Decode - Execute, ocupando cada uma menos tempo por ciclo, isto é no mesmo numero de estágios pretendidos.

O número de estágios existentes denomina-se de profundidade de estágios (Pipelining Deep).

❖ A profundidade também era um inconveniente pois, quando algo corria mal era necessário esvaziar (Flush) o conteúdo de pipelining, o que durava mais tempo quanto mais fossem o número de estágios.

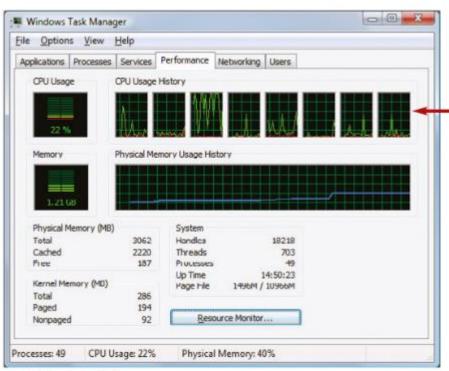
Os processadores seguintes têm menos estágios entre 10 a 20.

TÉCNICAS DE PROCESSAMENTO PARALELO

Hyper-Threading

É outra técnica usada para aumentar o rendimento de um processador. Implementada pela primeira vez no Pentium 4 HT e que permite dividir um processador físico em dois processadores lógicos para que aos olhos do sistema operativo possa ser visto como dois núcleos (dual core). Assim o mesmo programa é dividido em threads que são tratadas em simultâneo pelos dois núcleos virtuais. Porém para que isto aconteça o programa tem de prever a divisão em threads, algo que é realizado pelos programadores durante a implementação do programa.

❖ É claro que não é possível obter o mesmos resultados com a simulação de processadores virtuais, em comparação se tivéssemos processadores reais, este teriam um desempenho superior em mais 20 a 25%, no entanto o custo é consideravelmente menor.



TÉCNICAS DE PROCESSAMENTO PARALELO

Hyper-Threading

8 núcleos

- ❖ A intel deixou de implementar esta técnica partir do dual core. Mas voltou em força com a série i.
- ❖ Por exemplo um processador core i de 4 núcleos, no sistema operativo aparecerá com 8 núcleos.


8 núcleos, Core i7 HT

TÉCNICAS DE PROCESSAMENTO PARALELO

Exercício

trabalhar?

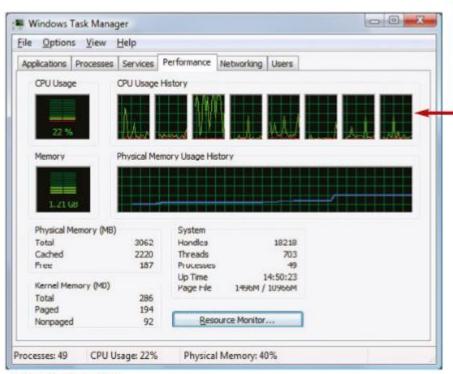
* Abre o Gestor de tarefas e verifica quantos, qual o processador instalado? Quantos núcleos virtuais e físicos possui, o computador onde estás a

8 núcleos, Core i7 HT

PROCESSADORES COM VÁRIOS NÚCLEOS

Como vimos anteriormente, o aumento de velocidade trouxe problemas no aquecimento do processador. Se os fabricantes continuassem a apostar nessa temática iam obrigar o utilizador a fazer pausas (desligar o PC) para que esse arrefece-se e só depois poderiam continuar a trabalhar, em analogia era o mesmo que comprar um Ferrari para ir apenas ao café que fica a 1 km de distância...

Tanto a Intel como a AMD, passaram a fabricar processadores com a tecnologia HT, isto é com cada núcleo simula dois processadores virtuais. O número de núcleos físicos têm vindo a aumentar. A figura seguinte mostra dois processadores que cada um possui 6 núcleos físicos. Simulando doze núcleos virtuais.



PROCESSADORES COM VÁRIOS NÚCLEOS

Exercício

8 núcleos

❖ Pesquisa no sítio Web dos fabricantes Intel e AMD, quais são os últimos dois processadores que produziram. Refere o número de núcleos físicos e virtuais de cada um e a que preços a que podemos adquirir.

8 núcleos, Core i7 HT